

10XC25 COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 250 / 40 W_{AES} (LF / HF)
- High sensitivity: 97 / 102 dB (LF / HF)
- Extended and linear frequency response
- Low resonant frequency: 63 Hz
- Low weight (Neodymium compression driver)
- 2,5" aluminium voice coil
- Waterproof LF cone
- Polyester diaphragm
- 70° coverage horn for HF dispersion control
- Designed for compact bass-reflex cabinets

Nominal diameter Rated impedance (LF/HF)	2		n 10 in 8 / 16 Ω
Minimum impedance (LF/HF)			5,5 / 10 Ω
Power capacity* (LF/HF)			40 W _{AES}
Program power (LF/HF)		50	00 / 80 W
Sensitivity (LF/HF**)	97 dB	1W /	1m @ Z _N
	102 dB	1W /	1m @ Z _N
Frequency range		60 - 2	0.000 Hz
Recom. HF crossover			or higher min slope)
Voice coil diameter (LF/HF)	•		2,5 in
	44,4	5 mm	1,75 in
BL factor			13,8 N/A
Moving mass			0,031 kg
Voice coil length			17 mm
Air gap height			7 mm
X _{damage} (peak to peak)			24 mm

THIELE-SMALL PARAMETERS***

Resonant frequency, f _s	63 Hz
D.C. Voice coil resistance, R _e	6,1 Ω
Mechanical Quality Factor, Q _{ms}	6,3
Electrical Quality Factor, Q _{es}	0,40
Total Quality Factor, Q _{ts}	0,38
Equivalent Air Volume to C _{ms} , V _{as}	41 I
Mechanical Compliance, C _{ms}	200 μm / N
Mechanical Resistance, R _{ms}	2 kg / s
Efficiency, η ₀	2,5 %
Effective Surface Area, S _d	$0,038 \text{ m}^2$
Maximum Displacement, X _{max} ****	5 mm
Displacement Volume, V _d	190 cm ³
Voice Coil Inductance, Le @ 1 kHz	0,4 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION

Overall diameter	260,5 mm	10,26 in
Bolt circle diameter	243,5 mm	9,59 in
Baffle cutout diameter:		
- Front mount	228 mm	8,98 in
Depth	153 mm	6,02 in
Net weight	5,1 kg	11,22 lb
Shipping weight	5,9 kg	12,98 lb

Notes:

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 6 kHz.
- *** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- **** The X_{max} is calculated as $(L_{VC} H_{ag})/2 + (H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m with FD-2XC2

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain) • Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •