

21LEX1600Nd

LOW FREQUENCY TRANSDUCER Preliminary Data Sheet

- High power handling and low distortion 21" subwoofer
- Exclusive Malt Cross[®] Technology Cooling System
- Low power compression losses
- High sensitivity: 99,5 dB (1W / 1m)
- FEA optimized neodymium magnetic circuit
- Ultra low air noise
- Optimized non-linear behaviour
- Exclusive NCR membrane (Neck Coupling Reinforcement)

- Waterproof cone with treatment for both sides
- Double silicone spider
- 4" TRIO in/out copper voice coil
- · Aluminium demodulating ring
- Extended controlled displacement: X_{max} ± 13 mm
- 65 mm peak-to-peak excursion before damage
- Optimized for direct radiation and band-pass subwoofer applications

TECHNICAL SPECIFICATIONS

540	mm	21 in
		8 Ω
		7,2 Ω
	1.60	0 W _{AES}
	3	3.200 W
99,5 dB	1W / 1r	n @ Z _N
	30 - 1	.000 Hz
	V_{b}	= 150 I
	F _b :	= 40 Hz
101,6	mm	4 in
		33 N/A
	0	,305 kg
		32 mm
		14 mm
		65 mm
	99,5 dB	99,5 dB 1W / 1r 30 - 1 V _b F _b =

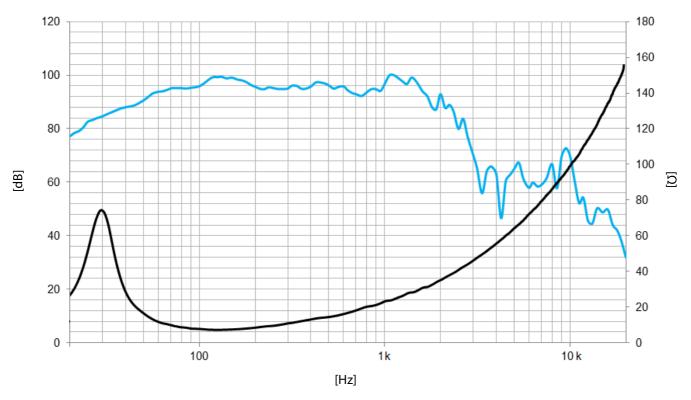
THIELE-SMALL PARAMETERS 3

Resonant frequency, f _s	30 Hz
D.C. Voice coil resistance, R _e	5,4 Ω
Mechanical Quality Factor, Q _{ms}	4,4
Electrical Quality Factor, Q _{es}	0,29
Total Quality Factor, Qts	0,27
Equivalent Air Volume to C _{ms} , V _{as}	394 I
Mechanical Compliance, C _{ms}	92 μm / N
Mechanical Resistance, R _{ms}	13 kg / s
Efficiency, η ₀	3,6 %
Effective Surface Area, S _d	0,1734 m ²
Maximum Displacement, X _{max} ⁴	13 mm
Displacement Volume, V _d	2254 cm ³
Voice Coil Inductance, L _e @ 1 kHz	1,9 mH

Notes

¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

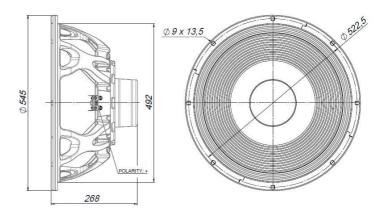
² Program power is defined as power capacity + 3 dB.


³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^4}$ The X_{max} is calculated as (L_{vc} - H_{aq})/2 + (H_{aq}/3,5), where L_{vc} is the voice coil length and H_{aq} is the air gap height.

21LEX1600Nd

LOW FREQUENCY TRANSDUCER
Preliminary Data Sheet



Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter	545 mm	21,5 in
Bolt circle diameter	522,5 mm	20,6 in
Baffle cutout diameter:		
- Front mount	492 mm	19,4 in
Depth	268 mm	10,6 in
Net weight	11,8 kg	26,0 lb
Shipping weight	14,3 kg	31,5 lb

DIMENSION DRAWING

